Measuring Sample Path Causal Influences With Relative Entropy
نویسندگان
چکیده
منابع مشابه
Measuring Anonymity with Relative Entropy
Anonymity is the property of maintaining secret the identity of users performing a certain action. Anonymity protocols often use random mechanisms which can be described probabilistically. In this paper, we propose a probabilistic process calculus to describe protocols for ensuring anonymity, and we use the notion of relative entropy from information theory to measure the degree of anonymity th...
متن کاملMeasuring Dynamical Prediction Utility Using Relative Entropy
A new parameter of dynamical system predictability is introduced that measures the potential utility of predictions. It is shown that this parameter satisfies a generalized second law of thermodynamics in that for Markov processes utility declines monotonically to zero at very long forecast times. Expressions for the new parameter in the case of Gaussian prediction ensembles are derived and a u...
متن کاملMinimum Sample Size for Reliable Causal Inference Using Transfer Entropy
Abstract: Transfer Entropy has been applied to experimental datasets to unveil causality between variables. In particular, its application to non-stationary systems has posed a great challenge due to restrictions on the sample size. Here, we have investigated the minimum sample size that produces a reliable causal inference. The methodology has been applied to two prototypical models: the linea...
متن کاملMeasuring convergence in language model estimation using relative entropy
Language models are generally estimated using smoothed counting techniques. These counting schemes can be viewed as non linear functions operating on a Bernoulli process which converge asymptotically to the true density. The rate at which these counting schemes converge to the true density is constrained by the training data set available and the nature of the language model (LM) being estimate...
متن کاملMeasuring Sample Quality with Diffusions
Standard Markov chain Monte Carlo diagnostics, like effective sample size, are ineffective for biased sampling procedures that sacrifice asymptotic correctness for computational speed. Recent work addresses this issue for a class of strongly log-concave target distributions by constructing a computable discrepancy measure based on Stein’s method that provably determines convergence to the targe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2020
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2019.2945290